Skip to main content
CASP Visit CASP website

Main

  • About Us
    • How We Can Help
    • A Bit of History
    • Our Status
    • People
    • Jobs
    • SEM Facility
    • Contact Us
    • News
    • Preventing Harm in Research and Innovation
  • Products
    • Geological Carbon Storage Research
    • Regional Research
    • Reports
    • Data Packages
    • Geological Collections and Data
  • Charity and Education
    • Publications
    • Meetings
    • The Robert Scott Research Fund
    • The Andrew Whitham CASP Fieldwork Awards
    • Outreach
  • Interactive Map
    • Arctic Region
    • China Region
    • East Africa Region
    • North Africa and Middle East Region
    • North Atlantic Region
    • Russia Region
    • South Atlantic Region
    • Southeast Europe to West Central Asia Region
  1. Home
  2. Publications
  3. Roundness of heavy minerals (zircon and apatite) as a provenance tool for unravelling recycling: a case study from the Sefidrud and Sarbaz rivers in N and SE Iran

Roundness of heavy minerals (zircon and apatite) as a provenance tool for unravelling recycling: a case study from the Sefidrud and Sarbaz rivers in N and SE Iran

In order to improve techniques for provenance studies, and especially to address the question of sediment recycling, morphological changes of two minerals with contrasting durability (zircon and apatite) were tracked during both fluvial transport and littoral reworking. The Sefidrud river system in northern Iran, which drains the Alborz volcano-sedimentary range into the Caspian Sea, and the Sarbaz river system in southeastern Iran, which drains the Makran Accretionary Prism into the Oman Sea, were chosen for this study. To determine source rocks of the grains, and thus their nature in terms of sedimentary cycles, zircon geochronology was conducted on both rivers. The zircon data indicate that most of the Sefidrud sediments are first cycle, derived from crystalline rocks, and the Sarbaz sediments are generally recycled from older wedges of the Makran. Results from SEM analysis show significant differences between the roundness of associated zircon and apatite grains. Zircon grains remain unrounded through several cycles, while apatite grains show abrasion from the early stages of their first cycle.

Publication Details

  • Type

    Journal Article
  • Title

    Roundness of heavy minerals (zircon and apatite) as a provenance tool for unravelling recycling: a case study from the Sefidrud and Sarbaz rivers in N and SE Iran
  • Year

    2016
  • Author(s)

    Zoleikhaei, Y., Frei, D., Morton, A. and Zamanzadeh, S.M.
  • Journal

    Sedimentary Geology
  • Volume

    342
  • Page(s)

    106-117
  • URL

    http://dx.doi.org/10.1016/j.sedgeo.2016.06.016
  • People

    • Andy Morton

Charity and Education

  • Publications
  • Meetings
  • The Robert Scott Research Fund
  • The Andrew Whitham CASP Fieldwork Awards
    • 2025 Fieldwork Award Winners
    • 2024 Fieldwork Award Winners
    • 2023 Fieldwork Award Winner
    • 2022 Fieldwork Award Winners
    • 2021 Fieldwork Award Winners
    • 2020 Fieldwork Award Winners
    • 2019 Fieldwork Award Winners
    • 2018 Fieldwork Award Winners
    • 2017 Fieldwork Award Winners
  • Outreach
  • © CASP A Not-For-Profit Organisation
  • Charity No. 298729
  • Privacy
  • Cookies
  • Contact Us
  • Jobs
  • Twitter
  • LinkedIn